Математические методы
Основные понятия математического моделирования
Формы представления модели
Обобщенная математическая модель
Требования к математической модели
Методы получения моделей
Использование математических моделей
Ссылки
Основные понятия математического моделирования
Нас окружают сложные технические системы.
В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью.
В широком смысле модель определяют как отражение наиболее существенных свойств объекта.
Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).
Модель может быть представлена различными способами.
Наиболее универсальным является математическое описание процессов - математическое моделирование.
В понятие математического моделирования включают и процесс решения задачи на ЭВМ.
Обобщенная математическая модель
Математическая модель описывает зависимость между исходными данными и искомыми величинами.
Элементами обобщенной математической модели являются (рис. 1):
Рис
. 1.
Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.
Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров R
x (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.Множество независимых переменных Y образуют метрическое пространство входных данных R
y. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry.Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.
Это могут быть:
- технические параметры объекта, не подлежащие изменению в процессе проектирования;
- физические возмущения среды, с которой взаимодействует объект проектирования;
- тактические параметры, которые должен достигать объект проектирования.
Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей R
G.Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.
Рис. 2.
Требования к математической модели
Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.
Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.
Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.
Универсальность
- определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.Экономичность
модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.
Получение моделей в общем случае - процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В тоже время такие операции, как расчет численных значений параметров модели, определение областей адекватности и другие, алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов проектируемой системы обычно выполняется специалистами конкретных технических областей с помощью традиционных экспериментальных исследований.
Методы получения функциональных моделей элементов делят на теоретические и экспериментальные.
Теоретические методы основаны на изучении физических закономерностей протекающих в объекте процессов, определении соответствующего этим закономерностям математического описания, обосновании и принятии упрощающих предположений, выполнении необходимых выкладок и приведении результата к принятой форме представления модели.
Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.
Несмотря на эвристический характер многих операций моделирование имеет ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют
Использование математических моделей
Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.
При составлении математической модели от исследователя требуется:
Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.
Алгоритм решения задачи на ЭВМ связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.
Продолжение см. на странице
Программные средства моделирования.
18.09.2000 г.